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ABSTRACT 

The current use of several different dynamic simulation parameters 
for correlating hluff body drag coefficient data is reviewed in terms of 
the need for a parameter which is both effective and does not contain 
any quantities whose values are uncertain in hypervelocity real-gas non- 
equilibrium flows.   Such a nondimensional number or parameter is sug- 
gested and its effectiveness for correlating a variety of both previously 
published and new sphere drag data is assessed. 
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M Mach number 

R Gas constant 

Re Reynolds number 

ReQ Pa, Ua, d/u0 

Rew Po, U,, d/pw 

Re«, p« U« d/fjm 

Sw UB/(2HTW)1'2 

T Temperature 

U Velocity 

V0 See Eq.  (8) 

a See Eq.  (1) 

7 Ratio of specific heats 

A. Mean free path 

JU Absolute viscosity 

? See Eq.  (14) 

p Mass density 

0 See Eq.  (14) 

u Exponent in ju  - Tu 

SUBSCRIPTS 

2 Downstream of normal shock 

fm Free molecular value 

o Isentropic stagnation value 

w Average (forward) surface value 

<*> Freestream value 
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SECTION I 
INTRODUCTION 

It is the purpose here to present some new sphere drag data and to 
discuss dynamic simulation or scaling parameters applicable in the 
study of bluff body drag under the rarefied-flow regimes characterized 
by near-free-molecule and merged-layer conditions.   Specifically, 
sphere drag data are the subject of most attention because of their 
plenitude, but it is expected that the discussion is more generally 
applicable to bluff bodies as a class under the flow conditions assumed. 

Concerning the two flow regimes, loose definitions for hypervelocity 
spheres may be given by the relations 

Aoo/d = 0(1) for near-free-molecule flow 

and 
Aoe/d = 0(0.1) for merged-layer flow 

Ignoring a factor which is of order unity for hypersonic Mach numbers, 
it is shown later that the comparable formulation in terms of Re0 is 

Re0 = 0(1) for near-free-molecular flow 

and 
Re0 = 0(10) for merged-layer flow 

The merged layer, of course, refers to merging of the bow shock 
wave and the stagnation region boundary layer.   At the higher Reynolds 
or lower Knudsen numbers, flows in this class may be analyzed on the 
basis of continuum theory, but it is not appropriate to make the conven- 
tional thin-shock, thin-boundary-layer assumptions.    As Knudsen num- 
ber increases,  progressing toward more rarefied flow,  noncontinuum 
phenomena and considerable departure from adiabatic, thin-shock-layer 
conditions arise.    However, the simpler, free-molecule flow model is 
not yet usable.   To stress the noncontinuum nature of the flow, the 
present title includes only mention of the more rarefied gas-dynamic 
regime to be discussed.    However, it is advantageous to include the 
more plentiful experimental data representing the merged-layer flow. 

Sphere drag data have been published in many papers, but very few 
authors have dwelt at any length on the scaling parameter used to pre- 
sent the data.    One reason has been the apparently satisfactory results 
obtained when using any of several parameters, as long as Mach num- 
bers and wall-to-total temperature ratios did not vary too widely. 
Several theories for the near-free-molecule regime have been presented, 
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but the range of Kn,, where the better of them give accurate predictions 
of CD seems not to extend below approximately 0. 5.    Furthermore, they 
require the introduction of varying degrees of empiricism in adjusting 
the purely theoretical result to best fit available experimental data,  and 
real-gas effects sometimes must be ignored in calculating fluid char- 
acteristics when experimental data are involved.   Noting that possibly 
significant differences exist between full-scale and laboratory flow con- 
ditions applying to expensive aerospace systems,  it behooves us to look 
more closely at the dynamic simulation parameters.   We will examine 
those that have come to light in theoretical analyses or have proved 
reasonably effective in correlating experimental results, except that 
those requiring calculation of shock-layer conditions will be avoided, 
being uncertain or at least inconvenient for the flow regimes of interest 
herein. 

SECTION II 
SIMULATION PARAMETERS 

In this section, the various leading simulation parameters are 
reduced to common terms insofar as possible.    The Reynolds number, 
Rew,  is rather arbitrarily chosen as one of these recurrent quantities. 

Sherman,  et al.  (Ref.  1) have suggested the parameter a0, where 

aD = Re0 (To 'Tw)5" /|4ll'i '(2RT,,)]*1! (1) 

This may be rewritten as 

Re0 (^w//x0) (T0/Tw) * <yR T«,)* (TVT«,^ 
a0   = 

Then if M„ » 1, i. e., TQ/T^ « (T-D M^/2, and ju  - T" 

a„ =  0.250 RevvOVTor-* [(y - D/yJ* .   (2) 

Kogan and Degtyarev (Ref.   2) have proposed the parameter Sw/Kna 

This may be expressed as 

Sw/Kn=0 =  (MM/KnJ [<y.'2) fTVT Jl* 

= [Re»/(1.26 y*)\ [(>/2) (T»/T»)]H (3) 

and,  using V -  Tu, this becomes 

Sw/Kih. = 0.561 Rew (Tw.Tj<y-'i (4) 
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Baker and Charwat (Ref.  3) and Kinslow and Potter (Ref. 4) made 
use of a parameter which may be defined as 

K.nw =  2'A Krwll -  Mec[8yTeo)/(9ffTw)]>4l 

=  (1.78 y* M«/He J/[l  +  0.531 M. yA (T«/Tw)xl <5) 

Then if \x - Tw,  Mm » 1,  and Tw - T., 

1/Knw = 0.298 Re w (Tw/T-)*»-* ■    (6) 

As seen by inspecting the second term in the denominator of Eq.  (5),  the 
requirement for high Mach number and cold-wall conditions is more 
specifically 0. 531 Mm T

1
^
2
 {TjT^)1^2 » 1.   The latter is more likely 

to be true for full-scale or aeroballistic range conditions than in wind 
tunnels, so Eq.  (6) must be used with caution. 

Comparison of Eqs.  (4) and (6) reveals that under hypersonic cold- 
wall conditions, 

Sw/Kn«,  -   1.88/Knw (7) 

The so-called rarefaction parameter or viscous-interaction 
parameter 

V„ = M. [(»tw T.)/0i« TwMVReoc* (8) 

is included in this grouping because it has been shown to be effective in 
correlating drag coefficients of a variety of both blunt- and sharp-nosed 
slender bodies.   The writers are not sure of its origin; the earliest work 
in which they have noticed the parameter is by Tsien (Ref.  5), who used 
the form M^/Re«//2.    Substituting fw/f, = dV/Tj" in Eq.  (8), we obtain 

V«, =  M. KT» /TJ/Rewl* <9) 

And if M. » 1,  such that M,, - [2 {T0/Tj/(y - 1)]1/2, then 

V» = [2(T0/Tw)/(y -  1)]« (1/Rew)« (10> 

A stagnation region Reynolds number should be considered in this 
discussion.    For many years, the Reynolds number, Re2, based on con- 
ditions immediately downstream of the normal part of the bow shock wave 
has been used to good effect in connection with blunt bodies, but its cal- 
culation in the flow considered here is complicated by major uncertain- 
ties concerning shock-layer conditions, specifically T2 or \x^.    That 
problem is not notably less severe in any of the previous cases where 
T0 is a term in the parameter,  so even use of the Reynolds number 

Ufo   =   Poe L'oe d/fto (11) 

is not a completely satisfactory solution. 
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Cheng (Ref.  6) introducted a parameter which is,  in the present 
case, 

K1 =  [<y -  l)/(2y)l(Re0/2)[(^(1/MJ(Tlt.To)l (12) 

with the starred quantities being reference values.    If it is assumed that 
V  -TU,  the final term in Eq.   (12) becomes (TSJT0)1-U.    Further,  taking 
T* = (T2 + Tw)/2 » T0/2, it is seen that K2 = [ft - l)/4->] Re0 (2)"-1. 
Alternately assuming ju = CT,  one finds K2 = [ft - l)/4-f] Re0 C.    There- 
fore, rather than discuss K separately it will be considered essentially 
equivalent to Re0 in this context. 

Writing Eq. (11) as Re0 = Rew (Tw/T0)u it is observed that if 
M^ » 1 such that T0/T. = ft - l)M00

2/2, then 

Re0   .   (1.78/Knoc) OWT,,)"-* [y/(y -  l)YA (13) 

Therefore,  under conditions where u = 1/2,  Re0 - 1/Kn,, for y = const. 
This shows that the well-known problem of defining a satisfactory mean 
free path in a real gas, which often leads to substituting M^/Re,,, for 
Kn,,,, also is avoidable when conditions justify choosing to use Re0 or K, 
In fact, there is some reason to avoid Rew  as well as Kn,,,, both of 
which require knowledge of fJtm,  because much of the hypersonic experi- 
mentation takes place in wind tunnels where T,,, is very low, e.g., 
20-30 CK,  and M^ is not accurately known at extremely low (or high) 
temperatures. 

Perhaps the better course is to drop any pretense of actually calcu- 
lating ^2 or ^O'  as needed for Re2, K or Re0,  and simply define a new 
simulation parameter in which we seek to retain the known effectiveness 
of the aforementioned parameters but avoid their ambiguity in rarefied, 
nonequilibrium flows.   Keeping Rew as previously and replacing Tw/T0 

with Hw/H0 ■ 2 H-w/Ua,2, we avoid the more awkward quantities A^, nw, 
7,  T2,  and T0 and define 

<J> = Rcw (2 \Kz\U)4 <14) 

where ? = f(Hw, U,,,2) for a given gas and is expected to be related to w. 
The relationship of * with Re0 and K encourages the belief that <& is 
appropriate to the type of flow considered; it remains to be seen if it 
serves the desired purpose. 
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SECTION lit 
EXPERIMENTAL DATA CORRELATION 

From Eqs.  (2), (4),  (6),  (10) and (14), the following set of simula- 
tion parameters is drawn, assuming 7 = constant in the first three: 

Rew (Tw/To)6*-* Rew (Tw/T0) 

Rew (Tw/T „.)*»-* Rew (2 Hw/LV)f 

These, plus Rew alone, are used in presenting a collection of (mostly) 
hypersonic sphere CD measurements in Figs.  1 through 5.   Data corre- 
sponding to Ma, as l°w as three are included so as to determine if the 
M^ » 1 assumption is unduly restrictive in the foregoing simplifications 
of the scaling parameters.    Values of u were varied to correspond to the 
temperatures represented in each case, but ? was taken to be constant. 
The identity of points on all figures is given in Fig.  5. 

No comment is offered concerning the results shown in Fig. 1 
through 4 beyond the observation that none of the dimensionless num- 
bers derived from the currently used parameters seems adequate to 
correlate the diversified data used to test them.    On the other hand, 
in Fig.  5 one sees a better degree of correlation when using $; in fact, 
it is not markedly poorer than the experimental scatter in most sets 
of data represented.    The rms A(Cj)/CDfm) reflecting failure to attain 
perfect correlation with $ is ±0.043; whereas, the average rms 
A(CD/Cj}f   ) owing to scatter in all sets of data is ±0. 032 and the 
poorer data scatter to a much worse extent.   These numbers were 
obtained by use of a digital computer program for statistical analyses 
of experimental data and curve fits. 

It will be noted that 1=0.6 has been found to be the best compro- 
mise for all data in Fig.  5.    Concern that the lower velocity data might 
have influenced this choice prompted a look at only those cases where 
Mo,, > 8 and 2B.^r/Va>

2 < 0. 18.    Then the same rms A(Co/CDfm) resulted 
when either ? = 0. 5 or 0. 6. 

For convenience, the very simple expression 

CD/CDfm = I - 0.09 4^ (15) 

which is plotted in Fig. 5, can be used as a representation of the corre- 
lated data for <& < 20,  i. e. ,  within the near-free-molecule and merged- 
layer flow regimes.    If one wished,  another empirical expression could 
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be found which would extend all the way to continuum flow.   One such 
is 

CD/CD,m   = 
A 0B + 1 

A*B + (CDfni/CD.)' 

V, 
(16) 

where A = 26.95,  B = -0.8714,  and when Mm » 1,   CDfm/CDi = 2.3. 
However, Eqs.  (15) and (16) should not be given undue attention at this 
time. 

SECTION IV 
CONCLUDING REMARKS 

A significant practical aspect of this question is to be seen in the 
need to predict full-scale hypervelo city-flight drag on the basis of sub- 
scale laboratory experiments wherein flow conditions often are not 
duplicated.    Unfortunately,  additional unknowns are represented by 
gas/surface interaction and atmospheric properties at high altitudes. 
Only the aerodynamic scaling is addressed in this paper.    It also is 
recognized that the body shape discussed,  having only one character- 
istic length, simplified the problem and inclusion of cones and other 
shapes presenting a choice of possible characteristic lengths would add 
to the problem. 

These first results suggest that $ serves better for sphere drag 
correlations than anything else considered herein.    However, measure- 
ments with less scatter are needed for further assessment of the simu- 
lation parameter.   To be most useful, these measurements should be 
made under hypervelocity cold-wall conditions.    They possibly would 
bring to light any dependence of ? on the enthalpy levels, which has 
not been attempted here because of the evident data scatter.    If vari- 
able 7 were a feature of such data this factor also could be evaluated. 

11 
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APPENDIX 
MEASURED SPHERE DRAG COEFFICIENTS AND 

EXPERIMENTAL CONDITIONS FOR 1968 AEDC DATA 

New experimental data not previously published are presented in 
Tables I-a through d for the convenience of users.    Values of C]3fm 

have been computed on the basis of fully diffuse, fully accommodated 
gas-surface interaction.    Viscosities used in computing Reynolds 
numbers are from Svehla (Ref.  1-1) and,  in the range of T,,, for nitro- 
gen in Tunnels L and M,  are on the order of five percent higher than 
viscosities taken from the NBS tables (Ref.  1-2).    In regard to T,,, in 
air in Range G and Tw in all cases represented here, agreement 
between the two references is on the order of one percent.   Enthalpies 
corresponding to Tw which were used in computing $ were taken from 
Ref. 1-2. 
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TABLE I 

SPHERE DRAG COEFFICIENTS 
a.   AEDC Tunnel L (Heated Flow) 

cp Cü/CDtm ft/sec M„ Re. T*/T. Rew 9        Symbol 

2.06 0.937 8314 9.96 4.00 1.92 2.60 0.64          0 

2.06 0.937 8314 9.96 4.00 1.92 2.60 0.64 

2.00 0.910 8314 9.96 2.00 1.92 1.30 0.32 

2.07 0.940 8314 9.96 2.0G 1.92 1.30 0.32 

2.06 0.937 8314 9.96 2.0G 1.92 1.30 0.32 

2.10 0.955 8314 9.96 2.00 1.92 1.30 0.32 

2.07 0.940 8314 9.96 2.00 1.92 1.30 0.32 

2.12 0.964 8314 9.96 2.00 1.92 1.30 0.32 

1.94 0.882 8314 9.96 10.00 1.92 6.51 1.60 

1.97 0.895 8314 9.96 10.00 1.92 6.51 1.60 

1.88 0.855 8314 9.96 10.00 1.92 6.51 1.60 

1.91 0.869 8314 9.96 10.00 1.92 6.51 1. 60 

1.92 0.873 8314 9.96 10.00 1.92 6.51 1.60 

1.8B 0.855 8314 9.96 10.00 1.92 6.5] 1.60 

1.87 0.850 8314 9.96 10.00 1.92 6.51 1.60 

1.91 0.869 8314 9.96 10.00 1.92 6. 51 1.60 

1.92 0.873 8314 9.96 10.00 1.92 6.51 1.60 

1.88 0.855 8314 9.96 12.50 1.92 8.14 2.00 

1.88 0.855 8314 9.96 - 12. 50 1.92 8.14 2.00 

1.88 0.855 8314 9.96 12.50 1.92 8. 14 2.00 

1.85 0.841 8314 9.86 12.50 1.92 8.14 2.00 

1.86 0.845 8314 9.96 12.50 1.92 8.14 2.00 

b.   AEDC Range G 

cp CD/CDfa, 

0.529 

ft/ sec 

20870 

M. Re. 

722.50 

Tw/T. 

1.20 

Rew 

636. 00 

« 
1.11 18.44 57.62 

1.26 0.600 21120 18.67 306.40 1.08 291.00 24.39 

1.46 0.629 20590 18.18 226.00 1.06 218.00 18.65 

1.62 0.772 21590 19.07 169. 30 1.21 148. 00 12.93 

1.47 0.700 23211 20.50 194.90 1.19 174. 00 13.81 

1.53 0.729 21544 19.05 89.00 1.15 80.60 6.85 

1.60 0.761 24338 21.45 208. 20 1. 19 186.00 13.95 

1.60 0.762 24850 21.92 179.00 1. 10 167. 50 11.68 

1.78 0.839 16138 14.21 28.60 1.17 25.60 3.11 

2.00 0.942 19260 16.90 27.40 1.08 26.00 2.43 

1.66 0.771 13650 12.00 36.40 1.27 30.80 4.80 

1.65 0.764 15500 13.90 63.00 1.54 46.60 7.01 

1.50 0.697 14950 13. 16 50. 10 1.42 39.20 5.86 

1.64 0.766 14510 12.78 22.10 1.27 18.70 2.71 

1.32 0.623 17070 15.00 298. 00 1.28 239. 00 28.63 

1.22 0.568 16405 14.40 489. 20 1.82 309.00 47.95 

1.39 0.650 16005 14.10 190. 00 1.67 128.00 19.45 

1.37 0.638 15592 13.70 60, 70 1.69 40.60 6.40 

Symbol 
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AEDOTR-68-242 

TABLE I   (Continued) 

AEDC Tunnel L (Unheated Flow) 

cD CD'CDfm 
ft/sec M. He„ Tw/T, Rew * 

1.86 0.636 2234 4.10 43.20 4.54 11.69 13.87 

1.80 0.616 2234 4.10 43.20 4.54 11.69 13.87 

1.80 0.616 2234 4.10 43.20 4.54 11.69 13.87 

1.78 0.610 2234 4. 10 43.20 4.54 11.69 13.87 

1.82 0.623 2234 4. 10 43.20 4.54 11.69 13.87 

1.83 0.627 2234 4.10 43.20 4.54 11.66 13.87 

1.85 0.634 2234 4. 10 36.30 4.54 9.82 11.65 

1.83 0.627 2234 4. 10 36.30 4.54 9.82 11.65 

1.90 0.650 2234 4. 10 36.30 4.54 9.82 11.65 

1.86 0.63G 2234 4.10 36.30 4.54 9.82 11.65 

2.05 0.702 2234 4. 10 26.00 4.54 7.03 8.35 

2.04 0.698 2234 4. 10 26.00 4.54 7.03 8.35 

2.04 0.698 2234 4.10 26.00 4.54 7.03 8.35 

2. 14 0.733 2234 4. 10 26.00 4.54 7.03 8.35 

2.08 0.712 2234 4. 10 26.00 4.54 7.03 8.35 

2.08 0.712 2234 4.10 26.00 4.54 7.03 8.35 

2. 19 0.750 2234 4.10 17.30 4.54 4.68 5.55 

2. 16 0.740 2234 4.10 17.30 4.54 4.68 5.55 

2,16 0.740 2234 4.10 17.30 4.54 4.68 5.55 

2.43 0.866 2234 4.10 8.65 4.54 2.34 2.78 

2.41 0.825 2234 4.10 8.65 4.54 2.34 2.78 

2.47 0.846 2234 4.10 8.65 4.54 2.34 2.78 

2.47 0.846 2234 4.10 8.65 4.54 2.34 2.78 

2.48 0.850 2234 4.10 8. 65 4.54 2.34 2.78 

Symbol 
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AEDC-TR.66-242 

TABLE I   (Concluded) 
d.  AEDC Tunnel M 

cD 
CD/CDfm 

u.. 
ft/sec M„ Re. Tw/T. Rfw $        Symbol 

1.36 0.619 6909 18.43 512.08 9.57 89.87 27. 52           ♦ 

1.40 0.635 9370 18.39 466.42 8.62 88.81 25.59 

1.37 0.622 9584 18.37 387.83 8.23 76.56 21.47 

1.28 0.581 9098 17.64 398.04 8.40 77.22 23.05 

1.38 0.627 9592 17.64 338.27 7.66 70.83 19.85 

1.43 0.650 9704 17.62 340.44 7.36 73.09 20.20 

1.35 0.614 8846 18.82 593.14 10.11 99.82 30.83 

1.42 0.645 9311 18.77 537.94 9.10 98.28 28.54 

1.40 0.637 9435 18.42 270.56 8.53 51.92 14.84 

1.30 0.592 8158 18.17 377.82 11.09 59.20 20. 15 

1.60 0.726 11692 17.97 229.46 5.39 63.65 14. 06 

1.56 0.710 11769 17.91 229. 72 5.18 64.69 14. IB 

1.58 0.717 10735 17.43 122. 28 5.90 31. 19 7.64 

1.66 0.755 10911 17.86 146. 60 6.00 36.90 8.85 

1.70 0. 770 11304 18. 13 173. 23 5.76 45.00 10.36 

1.67 0.759 11357 18. 18 148.11 5.73 38.61 8.83 

1.73 0.787 11421 17.89 97.51 5.49 26.26 5.97 

1.67 0.758 11736 17.65 97.69 5.05 28.03 6. 17 

1.77 0.806 10886 17.95 123.80 6.09 30.81 7.42 

1.60 0.728 10811 17.50 104.32 5.86 26.72 6.49 

1.76 0.800 11688 17.51 74.90 5.03 21.62 4.78 

1.67 0.760 11357 17.51 73.28 4.84 21.77 4.98 

1.59 0.724 10611 17.80 233.51 6.31 56.60 14.05 

1.49 0.679 9931 18. 10 285. 14 7.43 60.88 16.36 

1.48 0.671 10348 18.36 332.95 7.04 74.05 18.94 

1.55 0.703 9483 20.20 354.30 10.11 50.96 14. 14 

1.53 0.695 9435 20.60 400. 40 10.42 54.79 15.30 

1.48 0.673 9436 21.00 452.60 11.05 59.41 16.59 

1.55 0.706 9666 19.10 277.60 8.75 46.24 12.54 

1.60 0.726 9667 19.20 162. 90 8.81 26.93 7.30 

1.70 0.773 9707 20.00 193. 90 9.48 29.77 8.03 

1.60 0.728 9634 20.50 229.60 10.12 32.97 8.98 

1.73 0.786 9599 21.00 259.00 10.70 35.20 9.63 

1.80 0.818 9634 20.60 155.40 10.21 22.15 6.03 

1.54 0.698 9646 20.00 133.20 9.65 20.08 5.46 
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